<u>Semi-T₀ Spaces of Semi-Separation axioms in topological space</u>

¹ Priti Kumari & ² Sukesh Kumar Das

¹Research Scholar & ²M.Sc., University Department of Mathematics Tilka Manjhi Bhagalpur University, Bhagalpur (812007), Bihar, India

¹pritishivay@gmail.com & ²kumarsukesh92@gmail.com

Abstract : In this paper, we introduce a new class of space in the topological space, namely Semi- T_0 space of Semi-Separation axioms in the topological space. We find characterizations of these spaces. Further, we study some fundamental properties of these spaces in the topological space.

Keywords : Semi-open set, Semi-closed set, Semi-closure.

I. Introduction

The term Semi-T₀ space is weaker form of T₀ space. It plays a significant role in the topological space. Ever since the concept of the term Semi-T₀ space & Semi-T₁ space in a topological space was first introduced by the mathematician S. N. Maheshwari & R. Prasad^[3] in the year 1975. The term Semi-open sets are introduced by N. Levine^[1] in 1963. Then after the mathematician S. N. Maheshwari & R. Prasad^[3] used Semi-open sets to define and introduced the Separation axioms called Semi-Separation axioms like Semi-T₀ space in the year 1975. Later, the mathematician P. Bhattacharya & B. K. Lahiri^[6] used to Semi-open sets to define the axiom Semi-T_{1/2} space in the year 1982 and further investigated the separation axioms like Semi-T₀ space. The mathematician Charles Dorsett^[5] introduced the concept of Semi-Regular & Semi-Normal spaces and investigated their properties.

In this paper, analogous to S. N. Maheshwari & R. Prasad's^[3] Spaces, we investigate the certain results of these spaces in the topological space.

II. Preliminaries

Throughout this paper (X, τ) is always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X, τ) then C_L(A) & I_N(A) are denote the closure and interior of the set A in the topological space.

2.1. <u>Semi- T_0 space</u>^[3]: A topological space (X, J) is said to be Semi- T_0 space if and only if given any pair of distinct points x & y of set X, \exists a Semi-nbd of one of them not containing the other.

Or, A topological space (X, J) is Semi-T₀ space if and only if given any pair of distinct points x, y of X, \exists a Semi-open set of one of them not containing the other.

Or, A topological space (X, J) is Semi-T₀ space if and only if \exists a Semi-open set G such that either $x \in G \& y \notin G$ or \exists a Semi-open set H such that $x \notin H \& y \in H$.

2.2 . <u>Proposition</u> : Every Discrete space is a Semi- T_0 space in the topological space.

<u>Verification</u>: Let (X, D) be a Discrete space and let x & y be the distinct points of X. Since, every subset of Discrete space is an open set and every open set is a Semi-open set in topological space. So, $\{x\}$ is a Semi-open set $G \in J$ such that $x \in G$ but $y \notin G$ in J.

Hence, every Discrete space is a Semi- T_0 space in the topological space.

2.3 . <u>Proposition</u> : Every Indiscrete space is not a Semi-T₀ space in the topological space.

<u>Verification</u>: Let (X, I) be a Indiscrete space and let x & y be two distinct points of set X. Since, every subset of Indiscrete space is an open set and every open set is a Semi-open set in topological space but the only Semi-open set of the point 'x' is X and which also contains the point 'y' so \nexists a Semi-open set of the point 'x' which does not contains the point 'y'.

Hence, every Indiscrete space is not a Semi-T₀ space in the topological space.

2.4. <u>Proposition</u> : Let J and J^{*} be two topologies on a nonempty set X and let J^{*} be finer than J, that is $J \subset J^*$ then if J is Semi-T₀ space then J^{*} is also a Semi-T₀ space.

<u>Proof</u>: Let x and y be any two distinct points of the set X. Since, (X, J) is Semi-T₀ space so, \exists a Semi-open set $G \in J$ such that $x \in G$ but $y \notin G$ in J. Since, $J \subset J^*$ so G is also a Semi-open set such that $x \in G$ but $y \notin G$ in J^* . Hence, (X, J^*) is a Semi-T₀ space.

2.5. <u>Illustration</u> : Consider the set $X = \{a, b\}$ and the topology $J = \{\phi, \{a\}, X\}$ then the topological space (X, J) is a Semi-T₀ space.

Since, (X, J) is a Semi-T₀ space as for given a & b \in X. So, $\exists \{a\} \in J$ such that $a \in \{a\}$

& b \notin {a}. Hence, (X, J) is a Semi-T₀ space.

Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A

2.6. <u>Pre-Semi open function</u>: Let (X, J_1) and (Y, J_2) be two topological spaces and consider the function $f : (X, J_1) \rightarrow (Y, J_2)$ then the function f is said to be Pre-Semi open function if f maps each Semi-open set of (X, J_1) to a Semi-open set of (Y, J_2) .

2.7. <u>Semi-homeomorphism</u>: Let (X, J_1) and (Y, J_2) be topological spaces and consider the function $f: (X, J_1) \rightarrow (Y, J_2)$ then the function f is said to be a Semi-homeomorphism of (X, J_1) onto (Y, J_2) if the function f is one-one and onto, irresolute & Pre-Semi open function.

2.8. <u>Semi-homeomorphic</u> : A topological spaces (X, J_1) is Semi-homeomorphic with other topological spaces (Y, J_2) if \exists a Semi-homeomorphism of (X, J_1) onto (Y, J_2) .

Since, each homeomorphism of (X, J_1) onto (Y, J_2) is a Semi-homeomorphism of (X, J_1) onto (Y, J_2) but not conversely.

2.9. <u>Semi-topological property</u> : A property of a topological space X is said to be Semi-topological property if and only if it is preserved under Semi-homeomorphism.

2.10. <u>Proposition</u> : The property of a topological space being a Semi- T_0 space is preserved under one-one & onto Pre-Semi open function and hence is a Semi-topological property.

<u>Proof</u>: Let (X, J) be a Semi-T₀ space and let f be a one-one Pre-Semi open function of topological space (X, J) onto another topological space (Y, J^*) then we have to show that (Y, J^*) is also a Semi-T₀ space.

Let $y_1 \& y_2$ be any two distinct points of the set Y. Since, the mapping f is one-one & onto. So, \exists distinct points $x_1 \& x_2$ of the set X such that $f(x_1) = y_1 \& f(x_2) = y_2$.

Since, (X, J) be a Semi-T₀ space. So, \exists a Semi-open set 'G' \in J such that $x_1 \in$ G but $x_2 \notin$ G.

Since, mapping f is a Pre-Semi open function. So, $f(G) \in J^*$ is a Semi-open set such that $y_1 = f(x_1) \in f(G)$ but $y_2 = f(x_2) \notin f(G)$.

Thus, f(G) is a Semi-open set of y_1 & not containing y_2 .

Hence, (Y, J^*) is also a Semi-T₀ space.

Since, the property of being Semi- T_0 space is preserved under one-one & onto Pre-Semi open function. So, it is preserved under Semi-homeomorphism.

Hence, it is a Semi-topological property.

<u>**Remark</u>** : - Moreover, according to ^[3] the implications hold :</u>

International Journal of Management, IT & Engineering

Vol. 9 Issue 5, May 2019,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: <u>http://www.ijmra.us</u>, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell's Directories of Publishing Opportunities, U.S.A

"T ₂ -space	\rightarrow	Semi-T ₂ -space
\downarrow		\downarrow
T ₁ -space	\rightarrow	Semi-T ₁ -space
\downarrow		\downarrow
T ₀ -space	\rightarrow	Semi-T ₀ -space "

2.11 . <u>Theorem</u> : A topological space (X , J) is a Semi-T₀ space if and only if for any distinct arbitrary points x & y of the set X, the Semi-closure of $\{x\}$ & $\{y\}$ are distinct.

<u>Proof</u> : Let the two distinct points x & y of the set X.

Since, $x \neq y \implies SC_L\{x\} \neq SC_L\{y\}$, where SC_L is the Semi-closure.

Since, $SC_L{x} \neq SC_L{y}$ so \exists at least one point 'z' of the set X which belongs to one of them, say

 $SC_L \{x\}$ and does not belong to $SC_L \{y\}$. ------ (I)

We claim that, $x \notin SC_L\{y\}$.

Let $x \in SC_L\{y\}$ then $SC_L\{x\} \subset SC_L\{y\}$. So, $x \in SC_L\{x\} \subset SC_L\{y\}$ which contradict (I).

Thus, $x \notin SC_L\{y\}$ and consequently $x \in (X - SC_L\{y\})$.

Also since, $SC_L \{y\}$ is Semi-closed set so $(X - SC_L \{y\})$ is Semi-open set.

Hence, $(X - SC_L \{y\})$ is a Semi-open set of the point x and not containing the point 'y'.

Thus, (X, J) is a Semi-T₀ space.

Conversely,

Let (X, J) be a Semi-T₀ space and let x & y be the distinct points of X then we have to show that $SC_L\{x\} \neq SC_L\{y\}$.

Since, the space is Semi-T₀ space. So, \exists a Semi-open set G containing one of them say 'x' but not containing the point 'y'. So, (X – G) is a Semi-closed set which does not contain the point 'x' but contain the point 'y' then by definition of Semi-Closure of {y} is the intersection of all Semi-closed set containing {y}. It follows that, $SC_L{y} \subset (X - G)$.

Hence, $x \notin (X - G) \Longrightarrow x \notin SC_L\{y\}$. Thus, $x \in SC_L\{x\}$ but $x \notin SC_L\{y\}$.

It follows that $SC_L{x} \neq SC_L{y}$.

Hence, it is proved that the distinct points have distinct Semi-closure in a Semi-T₀ space.

<u>**Remark**</u> : Every subspace of a Semi- T_0 space is a Semi- T_0 space and so the property is hereditary.

REFERENCES

[1] Levine, N. (1963). Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70**(1), 39-41.

[2] Caldas M., (1994). Semi-T_{1/2} Spaces, Pro Math. 8, 115-121.

[3] Maheshwari S. N. & Prasad R. (1975). Some new Separation Axioms, Ann. Soc. Sci. Bruxelles. 89, 395-402.

[4] Tong J., (1982). A Separation Axiom Between T₀ and T₁, Ann. Soc. Sci. Bruxelles. 96, 85-90.

[5] Dorsett C.,(1982). Product spaces and semi-separation axioms, Periodica Math. Hungar. 13, 39–45.

[6] Bhattacharyya, P. & Lahiri, B. K. (1987). Semi-generalized closed set in topology, *Indian Journal of Math.*, **29**, 375-382.

[7] Dorsett C.,(1982). Semi-regular spaces. Soochow J. Math. 845–53.

[8] Hamllet N., (1975). A correction to the paper Semi-open sets and semi-continuity in topological spaces by Norman Levine, *Proc. Amer. Math. Soc.*, **49**, 458–460.

[9] Jankovic D. S. & Reilly I. L., (1985). On semi separation properties, *Indian J. Pure Appl. Math. Sci.*, 16, 957–964.

[10] Munkres J. R., (1975). Topology, A First Course, Prentice-Hall, Inc. .

[11] Noiri T., (1976). On semi-T₂-spaces, Ann. Soc. Sci. Bruxelles Ser. I, 90, 215–220.

[12] Crosseley S. G. (1978). A note on semi topological properties, Proc. Amer. Math. Soc. 72, 409-412.

[13] Munshi B. M., (1986). Separation Axioms, Acta Ciencia India, 12, 140-144.

[14] Levine N., (1961). A decomposition of continuity in topological spaces, *Amer. Math. Monthly*, 68, 44-46.

[15] David R. Wilkins & Hilary, (2001). Topological spaces, course 212.

[16] K. Priti., Some Properties of Semi-topological concepts, TMBU, Bhagalpur, Bihar, India, 812007
